Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 87(6): 958-67, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26808391

RESUMO

Aurora kinases are the most commonly targeted mitotic kinases in the intervention of cancer progression. Here, we report a resorcinol derivative, 5-methyl-4-(2-thiazolylazo) resorcinol (PTK66), a dual inhibitor of Aurora A and Aurora B kinases. PTK66 is a surface binding non-ATP analogue inhibitor that shows a mixed pattern of inhibition against both of Aurora A and B kinases. The in vitro IC50 is approximately 47 and 40 µm for Aurora A and Aurora B kinases, respectively. In cellular systems, PTK66 exhibits a substantially low cytotoxicity at micromolar concentrations but it can induce aneuploidy under similar dosages as a consequence of Aurora kinase inhibition. This result was corroborated by a drop in the histone H3 (S10) phosphorylation level detected via Western blot analysis using three different cell types. Altogether, our findings indicate that the ligand containing resorcinol backbone is one of the novel scaffolds targeting the Aurora family of kinases, which could be a target for antineoplastic drug development.


Assuntos
Trifosfato de Adenosina , Aurora Quinase A , Aurora Quinase B , Inibidores de Proteínas Quinases , Resorcinóis , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/farmacologia , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/química , Aurora Quinase A/metabolismo , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/química , Aurora Quinase B/metabolismo , Linhagem Celular , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Resorcinóis/química , Resorcinóis/farmacologia
2.
Proc Natl Acad Sci U S A ; 111(29): 10416-21, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24972791

RESUMO

We demonstrate the use of surface-enhanced Raman spectroscopy (SERS) as an excellent tool for identifying the binding site of small molecules on a therapeutically important protein. As an example, we show the specific binding of the common antihypertension drug felodipine to the oncogenic Aurora A kinase protein via hydrogen bonding interactions with Tyr-212 residue to specifically inhibit its activity. Based on SERS studies, molecular docking, molecular dynamics simulation, biochemical assays, and point mutation-based validation, we demonstrate the surface-binding mode of this molecule in two similar hydrophobic pockets in the Aurora A kinase. These binding pockets comprise the same unique hydrophobic patches that may aid in distinguishing human Aurora A versus human Aurora B kinase in vivo. The application of SERS to identify the specific interactions between small molecules and therapeutically important proteins by differentiating competitive and noncompetitive inhibition demonstrates its ability as a complementary technique. We also present felodipine as a specific inhibitor for oncogenic Aurora A kinase. Felodipine retards the rate of tumor progression in a xenografted nude mice model. This study reveals a potential surface pocket that may be useful for developing small molecules by selectively targeting the Aurora family kinases.


Assuntos
Descoberta de Drogas/métodos , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Análise Espectral Raman , Animais , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/química , Aurora Quinase A/metabolismo , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/química , Aurora Quinase B/metabolismo , Ligação Competitiva/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Progressão da Doença , Relação Dose-Resposta a Droga , Felodipino/química , Felodipino/farmacologia , Células HeLa , Humanos , Cinética , Camundongos , Camundongos Nus , Neoplasias/patologia , Reprodutibilidade dos Testes , Polos do Fuso/efeitos dos fármacos , Polos do Fuso/metabolismo , Propriedades de Superfície
3.
Methods Mol Biol ; 981: 239-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23381867

RESUMO

Among the different posttranslational modifications (PTMs) that significantly regulate the protein function, lysine acetylation has become the major focus, especially to understand the epigenetic role of the acetyltransferases, in cellular physiology. Furthermore, dysfunction of these acetyltransferases is well documented under pathophysiological conditions. Therefore, it is important to understand the dynamic structure-function relationship of acetyltransferases in a relatively less complicated and faster method, which could be efficiently exploited to design and synthesis of small molecule modulators (activators/inhibitors) of these enzymes for in vivo functional analysis and therapeutic purposes. We have developed surface-enhanced Raman scattering (SERS) method, for acetyltransferases towards this goal. By employing SERS, we have not only demonstrated the autoacetylation induced structural changes of p300 enzyme but also could use this technique to characterize and design potent, specific inhibitors as well as activators of the p300. In this chapter we shall describe the methods in detail which could be highly useful for other classes of HATs and PTM enzymes.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Análise Espectral Raman/métodos , Acetilação , Células HeLa , Humanos , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade , Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/metabolismo
4.
Med Res Rev ; 31(5): 757-93, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20196102

RESUMO

The Aurora A kinase belongs to serine/threonine group of kinases, well known for its role in cell cycle, especially in the regulation of mitosis. Numerous substrates of Aurora A kinase have been identified, which are predominantly related to cell cycle progression while some of them are transcription factors. Aurora A-mediated phosphorylation can either directly or indirectly regulate the function of its substrates. There are overwhelming evidences which report overexpression and gene amplification of Aurora A in several human cancers, and suggest that Aurora A could be a bona fide oncogene involved in tumorigenesis. Hence, Aurora A plays wide-ranging roles in both mitosis and its deregulation manifests in cancer progression. These observations have favored the choice of Aurora kinases as a target for cancer therapy. Recently, numerous small molecules have been discovered against Aurora kinases and many have entered clinical trials. Most of these small-molecule modulators designed are specific against either Aurora A or Aurora B, but some are dual inhibitors targeting the ATP-binding site which is highly conserved among the three human homologues of Aurora kinase. In this review, we discuss the physiological functions of Aurora A, interactions between Aurora A kinase and its cellular substrates, tumorigenesis mediated by Aurora A kinase upon overexpression, and small-molecule modulators of Aurora kinase as targets for cancer therapy.


Assuntos
Aurora Quinase A/fisiologia , Neoplasias/etiologia , Animais , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/química , Aurora Quinase A/genética , Regulação Enzimológica da Expressão Gênica , Genes Supressores de Tumor , Instabilidade Genômica , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Polimorfismo Genético , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...